
	
	
	
	
	
	
	
	
	
	
	

How to Instrument for
Advanced Web Application
Penetration Testing
	

How to Instrument for Pen Testing Copyright © DB Networks® 2018 www.dbnetworks.com

	

	

	
	
	

Table of Contents
	
	

1 Foreword... 3

2 Problem .. 4

3 Background ... 4
3.1 Dynamic Application Security Testing (DAST) 4
3.2 Static Application Security Testing (SAST) 6
3.3 Interactive Application Security Testing (IAST) 7

4 Adding Observability of SQL Traffic ... 8
4.1 A Case Study: Noticing the Near-Miss 9
4.2 Accelerating Software Certification ... 11
4.3 Intelligent Continuous Monitoring and Protection 12

	 	

How to Instrument for Pen Testing Copyright © DB Networks® 2018 www.dbnetworks.com

Page 3 	

	

	
	
	

1 Foreword
	

It’s critical your web applications are as secure as possible while also staying on
schedule and within budget. Often organizations turn to penetration testing and
application code scanning to identify security vulnerabilities. While neither
approach is perfect, they both do find lots of areas that your developers need to
tighten up (and just as importantly, they keep the compliance folks happy).
Still, there’s no question that there are important vulnerabilities that are being
missed. The challenge is how to find the most risky ones without blowing the
budget or schedule.

This technical white paper describes a new approach to identifying your most
critical web application vulnerabilities faster and at lower cost. The concept is to
conduct your penetration testing, vulnerability assessment, or dynamic
application testing with deep visibility instrumentation at the database tier. After
all, what the attackers want is your data – they either want to steal it or they
want to modify it. And much of your most sensitive data of course is in your
databases.

Instrumenting with DB Networks’ DBN-6300 during a dynamic web application
test provides valuable insights into which exploits are actually penetrating your
web and application tiers and attacking your critical database assets. Without
DB Networks’ DBN-6300, a penetration test that reports “no vulnerabilities
found” might have been frighteningly close to owning you, but neither you nor
the penetration tester would know how close. With in-depth visibility into the
database tier you’ll be able to analyze these “near misses” during your
penetration test post-mortem. And knowing which vulnerabilities allowed
unauthorized access to your database tier – your inner sanctum – enables you
prioritize what your developers need to fix first.

Page 4

How to Instrument for Pen Testing

www.dbnetworks.com Copyright © DB Networks® 2018

	

	

	

2 Problem
	

In the ongoing battle between IT security and those who would do harm, the
bad guys have two distinct advantages: time and opportunity. Time, because
they can probe a site for many months using automated tools and with
inexpensive labor to find a way in. Opportunity, because they can probe and
attack a variety of different IT assets and attempt endless approaches until they
are ultimately successful in breaching your defenses.

As a defender, on the other hand, you’re required to protect all your IT assets
all the time, while keeping within an often severely constrained budget. Web
applications are a major point of vulnerability in organizations today. Web
application vulnerabilities have resulted in the theft of hundreds of millions of
credit card numbers, the breach of millions of confidential records, and major
financial and reputational damage to a wide variety of high-profile organizations.
Application security testing aims to identify weaknesses and vulnerabilities that
must be addressed prior to being exploited; and while a great deal of effort has
gone into creating various different types of application security tests, the
effectiveness and efficiency of application security testing, whether dynamic or
static, are still far from optimal. Chief among the issues is a lack of real-time
visibility. Tests that appear to pass, finding no vulnerability, may discover
important vulnerabilities when greater visibility is available.

3 Background

To explore the strengths and weaknesses of application security testing, the
next sections explore three common categories of application testing: dynamic,
static, and interactive.

3.1 Dynamic Application Security Testing (DAST)

Dynamic testing, including penetration testing, treats your web application as a
“black box” – just as an actual attacker would. Dynamic testers typically begin
by looking for common vulnerabilities with automated tools. Skilled DAST
practitioners also take an exploratory approach, using clues learned from
interacting with your web application to guide them as to where issues are most
likely to be found. They may also use information gleaned from a vulnerability
assessment, when available.

Dynamic testing clearly has its benefits. It can certainly identify the “low-
hanging fruit” – vulnerabilities that are easiest for attackers to exploit, and

Page 5

How to Instrument for Pen Testing

www.dbnetworks.com Copyright © DB Networks® 2018

	

	

therefore most urgent to address. It also identifies a fraction of the more subtle
issues and some that may be unique to your environment. The number and
severity of vulnerabilities identified during penetration testing typically depend
heavily on the skill of the tester and the amount of time allocated for the test.

Figure	1.		Dynamic	testing	

Dynamic testing suffers from several well-known limitations:

Limited observability. Dynamic tests and penetration tests probe your
system from the outside in. They typically send sequences of requests and
then watch for associated responses. As a result they often can’t identify
when a test actually succeeds in penetrating an application if that penetration
does not generate a direct response or an easily visible change. There are
two important cases here: a) penetrations that have subtle or hard-to-detect
effects, b) near-misses, where an exploit gets through the outer layers of a
defense-in-depth architecture but has not quite found the key to the
innermost layer. (Some DAST vendors offer instrumentation agents that help
provide visibility – these are discussed below in the section on Interactive
Application Security Testing.)

Limited time. Closely related to the observability problem is the issue of
how much time, and how much money, you can afford to allocate to dynamic
testing. The longer a dynamic test runs, the more vulnerabilities it will find;
at some point, though, time’s up and the test must be concluded. Issues are

Page 6

How to Instrument for Pen Testing

www.dbnetworks.com Copyright © DB Networks® 2018

	

	

inevitably missed that would likely have been found in a longer, more
thorough test.

Limited application knowledge. One of the great benefits of dynamic
testing – the fact that it can find vulnerabilities in any kind of application
using any kind of architecture or technology – can also make it inefficient.
Application architecture makes some vulnerabilities less likely and others
more likely. Not knowing this, a typical dynamic test wastes time on the
unlikely vulnerabilities and spends less time than warranted on the more
likely ones. Combined with the tight time window to complete a test, this
inefficiency limits the results that can be attained.

3.2 Static Application Security Testing (SAST)

Static testing, including code scanning, analyzes your application source code to
identify deviations from recommended secure coding practices. Static testing is
also often called “white box” testing. Unlike dynamic testing, a code scan
“knows” everything, or nearly everything, about the application. Static testing
can also identify a specific line of source code responsible for a security
weakness, reducing the time developers need to spend debugging.

Figure	2.		Static	testing	

Static testing is an important part of the arsenal, but it also has its challenges.
These include:

Too many warnings. A static test report on a reasonably sized application
can present many thousands of warnings – far more than a development
team can (or should) spend time addressing. While SAST tools do attempt to
score different types vulnerabilities in order of importance, the scoring is
approximate at best. Literally anything in the report could be dangerous – if
it weren’t it would not be in the report at all.

Lack of visibility into third-party code. Scanning only works on the code
it can see. An application may include opaque third-party code directly; or, in

Page 7

How to Instrument for Pen Testing

www.dbnetworks.com Copyright © DB Networks® 2018

	

	

today’s loosely-coupled world, it may call on an opaque web service or other
network API.

Lack of understanding of the environment. The application’s own source
code is only a portion of the overall stack. Operating system configuration,
error handling, authentication systems, and a host of other factors all
contribute to the overall security posture of a web application. Where a
dynamic test exercises the entire stack, a static test puts a microscope on
just one element.

3.3 Interactive Application Security Testing (IAST)

Gartner recognized an emerging hybrid of dynamic and static test
methodologies, which they named Interactive Application Security Testing. The
basic idea of “interactive” testing is to link the dynamic test that probes at the
web layer to instrumentation that lives inside the application stack.

The typical implementation of interactive testing promises two benefits: first, to
guide dynamic tests toward areas that are potentially more vulnerable, and
second, to indicate which areas of source code are at fault when a dynamic test
finds an issue.

The idea behind Interactive Application Security Testing is brilliant. Combining
the best of the DAST and SAST worlds should, in theory, help overcome the
limitations of both, allowing testers to find more high-priority vulnerabilities
faster. Unfortunately, there are significant practical issues that get in the way of
realizing the theoretical benefits of IAST. These issues include:

Installation of invasive software agents. The instrumentation portion of
an interactive test suite is generally an agent that runs on the web server or
on the application server. As such, the instrumentation itself can affect the
performance of the application. In the worst case the difference between the
instrumented application and the native application may mask real
vulnerabilities and introduce spurious ones.

Limited technology support. In order to instrument a web server or
application server, an interactive testing system must be designed and tested
for a particular vendor, a particular technology, and a particular version.
Developers who use innovative technologies, or even those who update to
the latest recommended versions of common software stacks, have to wait
for interactive test tools to catch up to them (or more likely, release their
applications without running interactive testing).

Single-vendor syndrome. Mature IT shops have already spent significant
money on SAST and DAST tools. In most cases the tools have been bought
from different vendors, largely because the leaders in one approach are not
strong in the other. To get the benefit of IAST you have to commit to a full
single-vendor suite, which usually means compromising on other dimensions.

Page 8

How to Instrument for Pen Testing

www.dbnetworks.com Copyright © DB Networks® 2018

	

	

Lack of visibility into third-party code. The static portion of an IAST
regime has all the same issues as SAST, as discussed above.

4 Adding Observability of SQL Traffic

DB Networks takes a novel approach to increase the effectiveness of Web
application penetration testing. We begin with the realization that the assets
attackers desire are stored in databases.

Customer information, of course, heads the list of sensitive data that attackers
want to access, and customer information is always stored in databases. But
even when the data in question is not customer credit card numbers or social
security numbers, the database still plays a crucial role. Modern web sites are
built on use database content-management systems, so the way for a hacktivist
to deface your home page likely requires overwriting records in your content-
management database. It’s also typical for IT to use databases to store its own
passwords and authorization credentials; compromising those databases can
give an attacker all the keys to the kingdom.

Current DAST and SAST approaches, and even newer IAST systems, focus on
the web and application tiers. They identify some of the vulnerabilities that let
attackers through your outer layer defenses. They don’t watch the database tier,
though, so regardless of how much of this sort of testing is done, there’s no way
of knowing what attacks are actually getting through to the database layer.

DB Networks’ DBN-6300 observes and decodes all the SQL transactions between
the application and the database. It receives a copy of network traffic from a
network tap or port mirror. The DBN-6300 then fully decodes the incoming SQL
transactions and, using advanced behavioral analysis, alerts in real time when it
identifies anomalous activity.

Page 9

How to Instrument for Pen Testing

www.dbnetworks.com Copyright © DB Networks® 2018

	

	

																																		Figure	3.		Dynamic	testing	with	DB	Networks	visibility	

4.1 A Case Study: Noticing the Near-Miss

In one typical situation, a CISO at a large health care provider commissioned a
third-party pen tester to evaluate his organization’s attack surfaces. The tester
probed for SQL Injection vulnerabilities – consistently listed by the Open Web
Application Security Project as the #1 most serious threat to web applications –
but found none that he could confirm, so he reported the SQL Injection threat as
relatively low for this site.

In most cases the story would have ended there. This time, though, the CISO
had also deployed DB Networks’ DBN-6300 to monitor all database SQL
transactions. The DBN-6300 alerted during the pen test. It provided the internal
security team visibility at the database tier that discovered an extremely serious
vulnerability – one that the pen tester was exercising but, being blind SQL
injection, not seeing the results.

Here’s what happened. The penetration test probed the web application using
invalid URLs. Following best practice, the application did not return error
messages that would have assisted the “attackers” in better understanding the
system. Further, every invalid URL was logged by the web server’s error-
handling code, allowing for future forensic analysis. However, the error-handling
code used a simple database to store these invalid URL strings; and this internal
error-handling code was vulnerable to SQL injection.

The testers’ efforts were not returning any visible results, but behind the scenes
they had actually succeeded in sending SQL command strings by way of the

Page 10

How to Instrument for Pen Testing

www.dbnetworks.com Copyright © DB Networks® 2018

	

	

error-logging code path. It gets worse: the error log was stored as “just one
more table” in a database instance whose primary purpose was to store very
sensitive data (a choice the developer had made to save on database license
expense). So a cleverly formed URL string could read, write, or delete the more
sensitive data.

During the short duration of the penetration test, the precise combination of
characters needed to compromise the database was not found, and as a result
the tester had no idea how close he actually had come to cracking the system
wide open. What the DBN-6300 revealed was that the SQL injection attempts
had gotten within one character of compromising the database completely. And
here is where the attacker-defender mismatch becomes crucial: while the
dynamic test did not continue long enough to find the magic string, any patient
attacker would certainly have found it.

This story does have a happy ending. Using the information gathered from the
combination of dynamic testing and DBN-6300 visibility, the organization quickly
fixed their error handling code.

This testing experience is similar to what airline safety agencies call a “near
miss”:

an unplanned event that did not result in injury, illness, or damage – but
had the potential to do so. Only a fortunate break in the chain of events
prevented an injury, fatality or damage. (-Wikipedia)

A near miss is fortunate in two ways: first, that no damage was done, and
second, that it provides the opportunity to put corrective action in place before
the same failure presents itself again.

In a dynamic testing environment, near misses are extremely valuable. They
point to security flaws that you would not otherwise know about but that are
easily exploitable by determined attackers. Contrast the near miss for example
with the thousands of “vulnerabilities” reported by a SAST tool – most of which
are not really exploitable because they are hidden behind other protections – or
the handful of successful attacks found by a DAST tool, which are real but which
represent only a small subset of real threats. Figure 4 shows this relationship.

Page 11

How to Instrument for Pen Testing

www.dbnetworks.com Copyright © DB Networks® 2018

	

	

																		Figure	4.	Using	the	near-miss	to	find	important	vulnerabilities	

4.2 Accelerating Software Certification

The above case study showed how DB Networks’ technology helps make an
organization more secure. The same technology can also save time and money
in an organization’s software development life cycle (SDLC).

	
Figure	5.		Augmenting	the	software	development	life	cycle

A portion of a typical life cycle is shown in Figure	 5. Certifying an application’s
security properties, which may happen either during User Acceptance Testing or
in a separate step as shown here, can be a costly and time-consuming exercise.

Page 12

How to Instrument for Pen Testing

www.dbnetworks.com Copyright © DB Networks® 2018

	

	

 Version 03132018	

Security vulnerabilities found late in the cycle are the most difficult to repair.
Many vulnerabilities only show up in the certification step, however, because
expensive dynamic testing and penetration testing are often run only in the
certification step.

Introducing a lightweight dynamic-test step during the system test phase, with
visibility provided by DB Networks, can find security vulnerabilities in the early
stages of the development cycle, improving efficiency and helping make
deployment schedules more predictable.

4.3 Intel l igent Continuous Monitoring and Protection

It’s often impractical to repeat a full code scan, penetration test, or other
application security test for every change in your code base, your environment,
or the external threat landscape. Application security tests, no matter how
effective, always measure a snapshot of a single point in time.

Unlike other testing technologies, DB Networks’ DBN-6300 offers the option of
carrying over directly into production deployment once the penetration testing
concludes. In a production system, you can deploy DB Networks’ DBN-6300
appliances to provide real-time continuous analysis of SQL traffic. Using
advanced behavioral analysis, the DBN-6300 will alarm the instant a rogue SQL
transaction occurs. DB Networks can be used for application security testing
only, in production only, or in both environments for maximum security.

Learn more
To find out more about how to gain deep visibility into your database networks
and prevent database data loss, contact DB Networks at +1-800-598-0450 or
email info@dbnetworks.com.

DB Networks®
15015 Avenue of Science
Suite 150
San Diego, CA 92128
Tel: +1-800-598-0450
www.dbnetworks.com

Copyright © 2018 DB Networks, Inc. All rights reserved.
DB Networks is a registered trademark of DB Networks, Inc.
All other brand or product names are trademarks or registered trademarks of their respective holders.

